Interpreting Polymorphic FPC into Domain Theoretic Models of Parametric Polymorphism
نویسنده
چکیده
This paper shows how parametric PILLY (Polymorphic Intuitionistic / Linear Lambda calculus with a fixed point combinator Y ) can be used as a metalanguage for domain theory, as originally suggested by Plotkin more than a decade ago. Using recent results about solutions to recursive domain equations in parametric models of PILLY , we show how to interpret FPC in these. Of particular interest is a model based on “admissible” pers over a reflexive domain, the theory of which can be seen as a domain theory for (impredicative) polymorphism. We show how this model gives rise to a parametric and computationally adequate model of PolyFPC, an extension of FPC with impredicative polymorphism. This is the first model of a language with parametric polymorphism, recursive terms and recursive types in a non-linear setting.
منابع مشابه
From parametric polymorphism to models of polymorphic FPC
This paper shows how PILLY (Polymorphic Intuitionistic / Linear Lambda calculus with a fixed point combinator Y ) with parametric polymorphism can be used as a metalanguage for domain theory, as originally suggested by Plotkin more than a decade ago. Using Plotkin’s encodings of recursive types in PILLY we show how parametric models of PILLY give rise to models of FPC, a simply typed lambda cal...
متن کاملAn Axiomatisation of Computationally Adequate Domain Theoretic Models of FPC
Categorical models of the metalanguage FPC (a type theory with sums, products, exponentials and recursive types) are defined. Then, domain-theoretic models of FPC are axiomatised and a wide subclass of them —the non-trivial and absolute ones— are proved to be both computationally sound and adequate. Examples include: the category of cpos and partial continuous functions and functor categories o...
متن کاملAn Axiomatization of Computationally Adequate Domain Theoretic Models of FPC
Synopsis Categorical models of the metalanguage FPC (a type theory with sums, products, exponentials and recursive types) are deened. Then, domain-theoretic models of FPC are axiomatised and a wide subclass of them |the non-trivial and absolute ones| are proved to be both computationally sound and adequate. Examples include: the category of cpos and partial continuous functions and functor cate...
متن کاملDomain-theoretic models of parametric polymorphism
We present a domain-theoretic model of parametric polymorphism based on admissible per’s over a domain-theoretic model of the untyped lambda calculus. The model is shown to be a model of Abadi & Plotkin’s logic for parametricity, by the construction of an LAPL-structure as defined by the authors in [7, 5]. This construction gives formal proof of solutions to a large class of recursive domain eq...
متن کاملCategory-theoretic Models of Linear Abadi & Plotkin Logic
This paper presents a sound and complete category-theoretic notion of models for Linear Abadi & Plotkin Logic [Birkedal et al., 2006], a logic suitable for reasoning about parametricity in combination with recursion. A subclass of these called parametric LAPL structures can be seen as an axiomatization of domain theoretic models of parametric polymorphism, and we show how to solve general (nest...
متن کامل